Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors.

نویسندگان

  • P L Bond
  • P Hugenholtz
  • J Keller
  • L L Blackall
چکیده

The bacterial community structures of phosphate- and non-phosphate-removing activated sludges were compared. Sludge samples were obtained from two sequencing batch reactors (SBRs), and 16S rDNA clone libraries of the bacterial sludge populations were established. Community structures were determined by phylogenetic analyses of 97 and 92 partial clone sequences from SBR1 (phosphate-removing sludge) and SBR2 (non-phosphate-removing sludge), respectively. For both sludges, the predominant bacterial group with which clones were affiliated was the beta subclass of the proteobacteria. Other major groups represented were the alpha proteobacterial subclass, planctomycete group, and Flexibacter-Cytophaga-Bacteroides group. In addition, several clone groups unaffiliated with known bacterial assemblages were identified in the clone libraries. Acinetobacter spp., thought to be important in phosphate removal in activated sludge, were poorly represented by clone sequences in both libraries. Differences in community structure were observed between the phosphate- and non-phosphate-removing sludges; in particular, the Rhodocyclus group within the beta subclass was represented to a greater extent in the phosphate-removing community. Such differences may account for the differing phosphate-removing capabilities of the two activated sludge communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Removal of phosphate from Synthetic Wastewater Using Bacterial Consortium

The biological phosphorus removal is a microbial process widely used for removing phosphorus fromwastewater to avoid eutrophication of water bodies. The study was aimed to screen the efficient phosphatereducing isolates and used to remove phosphate from synthetic wastewater using batch scale process. Thethree most efficient phosphate reducers were isolated and screened from eu...

متن کامل

A Comparative Study on Performance of Two Aerobic Sequencing Batch Reactors with Flocculated and Granulated Sludge Treating an Industrial Estate Wastewater: Process Analysis and Modeling

In this study, the performance of two aerobic sequencing batch reactors (SBR) in removing carbon and nutrient (N & P) from Faraman’s industrial estate wastewater (FIW) with flocculated and granulated sludge were compared. The comparison study was performed by varying two significant independent variables (aeration time and mixed liquor volatile suspended solids (MLVSS)). The experiments were co...

متن کامل

Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

BACKGROUND Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). METHODOLOGY/PRINCIPAL FINDINGS A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and...

متن کامل

Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation.

Laboratory-scale sequencing batch reactors (SBRs) as models for activated sludge processes were used to study enhanced biological phosphorus removal (EBPR) from wastewater. Enrichment for polyphosphate-accumulating organisms (PAOs) was achieved essentially by increasing the phosphorus concentration in the influent to the SBRs. Fluorescence in situ hybridization (FISH) using domain-, division-, ...

متن کامل

Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm.

The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O(2), NO(2)(-), and NO(3)(-) profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 61 5  شماره 

صفحات  -

تاریخ انتشار 1995